IDENTITIES IN RINGS WITH INVOLUTIONS

BY
S. A. AMITSUR

ABSTRACT

A ring R with an involution @ — @* which satisfies a polynomial identity
plxt,es Xa; x*1, ... ,x*,] = 0 satisfies- an identity which does not include
the x*. This generalizes the result of [1] where the symmetric elements of R
were assumed to satisfy an identity.

1. Introduction. Let R be a ring with an involution *: a — a*. Let R be an
Q-algebra, (Q will be assumed to be a commutative ring). In [1] we have shown
that if the set of symmetric (or antisymmetric) elements of R satisfy a polynomial
identity then the ring R itself satisfies a polynomial identity, and certain relations
between the bounds of the identities have been obtained. In this paper we generalise
this result in the following:

THEOREM 1. If R satisfies a polynomial identity of the form p[x,-,x,;
x* - x*] = 0 of degree d, then R satisfies an identity Sy [x]™ = 0LIfR
is semi-prime then m = 1.

This extends the result of [1], since if the symmetric elements of R satisfy a
polynomial identity p[z,,~--,z,] =0, then R satisfies the identity
plx; +x*;, x5 + x*;, -+, x;+ x*,] =0 which is of the form given in our
theorem.

The proofs of the basic lemmas are obtained by refining those of [1] and by
simplification of the case of primitive rings. Proofs which are the same as in [1]
will just be quoted.

The polynomials p[x;x*] which appear in Theorem 1 can be described as
follows: Let {x;, y;} be an infinite set of pairs of non-commutative indeterminates
over Q, and construct the polynomial ring Q[---,x;,y;,--] = Q[x;y], with Q
in the center. There is a unique involution *: Q[x;y] —» Q[x;y] generated by
the maps *: x; —» y; and y; - x; for every j, Now p[x;x*] is an element in

1 Sz,,_[x] = 824[x1,00, X24] = T & X4y Xip ... Xizq IS the standard identity of degree 2d.
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Q[x;y] = Q[x;x*]; by the degree of p[x;x*] we mean its total degree as a
polynomial in Q[x;x*].

To simplify statement of results and proof we shall assume henceforth that:

(@) p[x;x*] is a polynomial of degree d, and the coefficient of one of its
monomials of degree d is =1;

(b) R will be assumed to satisfy the identity p[x;x*] = 0; meaning that
pla;a*] = 0O for every substitution x; = a;, x*; = a*; of elements g;eR.

The linearization process of polynomial identities can be also applied in our
case, and will yield:

LeMMA 2. If R satisfles the identity p[x;x*] = am(x;x*) + --- of degree d
where o % 0 and m(x;x*) is a monomial of degree d, then R satisfies also an
identity p[x;x*] = axy%; - X4 + PolXy, -+, %43 X*(,+--,x*,] where the mono-
mials of po[x;x*] with non-zero coefficients are of degree d and each contain
either x; or x*; (not both!) for every i = 1,---,d.

The proof is by linearization and induction on the maximum of “‘the degree
of pin x; plus the degree of p in x*;”. If the degree of p in x; + the degree of p
in x*; is I, then the polynomial p[---, x; + z,--+5 =, x* 4 2%, .= ] — p[-++, x5
coo,x¥, 0] = p[+++s2,+++; -+, 2% +++] which is obtained by replacing x; by x, + z
and x*; by x*; + z* (z is an additional x) and substraction, will also hold in R
and will contain a monomial am’(x;x*) of degree d. The degree of this new
polynomial in x; + degree in x*; will be lower — and induction can be applied.
The case where these degrees for each i is one will give a monomial
ayy,-, ya = am(x,x*) where each y; is an x; or x*;, but only one of them will
appear. Replacing the x*; by x; (and x; in the other monomials by x*;) and chang-
ing the indices will clearly yield our lemma.

Since we assumed in (a) that one o is = 1, hence we may assume that p[x; x*]
is the of form:

(@) JETPRTS FH5 A e, X% = X1Xz + Xg + po[*1 ey Xgy X¥ g, e, X%,

and p, is of the form stated in Lemma 2.
If we use the polynomial of (a) then clearly we have:

LeMMA 3. If R satisfies p[x;x*] = 0, and K is a commutative Q ring then
R®qK = Ry also satisfies p[x;x*] = 0, where the involution of 'Ry is given
by (r®k)* = r*®k, and every homomorphic image R¢ of R, for which
(ker )* < Ker¢ will also satisfy the same identity.
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The proof is evident since p[x,x*] can be assumed to be of degree 1 in each
x; and x*; with no two of them in the same monomial.

2. Nil subsets of R. We are now in position to refine the proofs of 1, and
to show our first result:

LeMMA 4. Let P be a two sided ideal, and U a subset of R such that
U = U* = {r*|ReU} and U™ < P then U’ generates a nilpotent ideal mod-
ulo P.

The proof is parallel to [1, Lemma 1]:

For k> d, consider the sets T,;—; = U*’RU’™' and T,; = U*RU/ for
j=12-,k. Since U* = U, it follows that T*; = Ty, _;, and so if L= d,
2k — A>d. Note also that if 1, T; for all i, then t,-tjeRU"R if > j. Hence if
we choose x; =t; i = 1,2,-+,d then x*, = t*;,€ T,,—; and 2k —i>d. Hence
for every monomial y;, --- y;, where the y; is one of the ¢; or #*; and which is not
tyty--+1;, we have y;y;, ;- UR< RUR Qh=d, or 2h—1 = d) (com-
pare with [1, p. 101]). So that p[t;*]JU'R = t,---1,U"R (mod RU*R) and the
rest of the proof is that of [1 lemma 1].

Next theorem is the extension of [1, Theorem 2]. The proof is the same and
will not be repeated.

THEOREM 5. If R satisfies an identity of degree d, then the nil radical U(R)
is equal to the lower radical L(R) and L(R)* < N,(R), where N{(R) is the union
of all nilpotent ideals of R, In particular, if R is semi-prime (i.e. I(R) = 0)
then R has no nil ideals.

3. Primitive images of R, We turn now to the primitive case. Let R be an
arbitrary ring with an involution, P a primitive ideal in R such that R/P is an
irreducible ring of endomorphisms of a vector space V;,, over a division ring D.

Instead of [1, Lemma 3], we have a different result, which will enable us to
prove that primitive rings with identities always have a minimal left ideal:

LemMA 6. If R is as above, then one of the following hold:

1. R/P has a minimal left ideal.

2. There is a finite dimensional D-subspace W <V, such that L=(0: W)
= {r|rW =0}, satisfies L* < P.

3. For every finite dimensional subspace W < V, and every v¢ W, there
exists x€ R such that xW = x*W =0 x*v =0 and xv¢ W + vD,
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Proof. If R has no minimal left ideal. i.e. (1) is not valid, and neither (2)
holds, then let W be a f.d. subspace of V and let v¢ W. Consider the f.d.-space
W =W+uvD. (0:W)*¢ P since (2) does not hold, hence there exists ae R
such that a# =0 and a*V s 0: namely, take ae(0: W) such that a*¢ P. The
space a*V is not finite dimensional, since a primitive ring which has a linear
transformation of finite range has a minimal left ideal ([2]) p. 75). Let L 3 (0: W)
then since v¢ W it follows by the density theorem that Lv = V. Hence,
a*Lv = g*V, which is of infinite dimension, must contain a vector u¢ W + vD
as the latter is of finite dimension. We conclude therefore that there exists be L
such that a*bv = u. Finally set x = a*b; then u = xv¢ W + vD; xW = 0 since
be(0: W); x* = b*a so that x*W =0 je. x*W=x*» =0. q.ed.

With the help of this lemma we prove the parallel of [1, lemma 4]. That is:

LemMMA 7. If R is a ring with an involution which satisfies an identity then
every primitive image of R has a minimal left ideal.

Proof. We have to consider cases (2) and (3) of Lemma 6. In case (2), and
if (1) does not hold then (V:D) = oo, and let vy,v,, -+-,v; be D-independent
elements of ¥ which ¢ W. Wis finite dimensional hence, it follows by the density
theorem that there exists #,€(0: W) such that tw; =0 for i #j tw, = v,
for i = 1,2,--- d. Since (0: W)* = P it follows that t*,VV = 0. Hence:

0 = plty, -y tg; t*y, - t¥ vy = tyty - typy = vy # 0

which is a contradiction. Thus, even in this case R/P has a minimal left ideal.

In case (3), and if (1) does not hold then: we obtain a contradiction as follows:

Start with v 32 0 and choose t,€ R by (3) so that t;p¢é vD, t*;0 = 0 (use W =0).
Next choose #;_;€R by (3) so that t*;_jv=1t*;_;twv=0, t,_;,v0=0 and
ti—tao ¢ vD + twD by applying (3) to W =vD and v replaced by t,v. We can
continue this way to get a sequence of elements f#;,t,,:--,f; such that
ttitier - taw) =0 for i<j+1; t*(titie, - t0) =0 for i<j+1 and
titjay -t € 0D + toD 4 ty_ 20D + -+ + tj, b, taD.

Consider now the substitution x; = ¢; then

0 = plty, -, ta; t*1, s t¥ o = py[ts, s tam g3 %, oy ¥ Jtg0

since each monomial which does not end with ¢; will annihilate v as it ends with
t; (j#d)orat* (k=d)and all these annihilate v. The monomials ending
with ¢; will not contain t*; (by the way p[x; x*] was chosen) so that p,[, ] does
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not contain neither t, nor t*,. The same reasoning replacing v by t,v, and con-

tinuing fOl' £d_1tdv td_ztd_ltdv CtC., Will yield: 0 = p[t, 2*]9 = 21{2 b tdv ¢ 0
Again a contradiction, which implies that R/P has a minimal left ideal.
Finally we reprove the crucial part of [1, Theorem 5].

LemMA 8. If R is a primitive ring with an involution satisfying an identity
plx;x*] = O of degree d then R is a complete ring of linear transformations
of a vector space Vy of dimension £ d.

Proof. We proceed as in [1, p. 104], and get the Hermitian for (v,v) form
V = Re, where Re is a mininmal left ideal. If there exists v e V such that (v,v) # 0,
we have ¥ =vD + v and R, = {reR|rf = 0, rv* < v'} is also an irreducible
ring of endomorphism of v, and the involution (*) induces an involution on R,
(the proofs are given in [1] p. 104 lines 7-20). Now R, will satisfy an identity
of degree d — 1, since choose t; = ur*v*, ve V and u arbitrary in v*, reR ar-
bitrary, and all ;e R, for i < d. Then:

0= p[tl""’ 1a; t*lx ] t*d]v =

= Poltssrstam1st® sy Fac i Qa0 + Paltss oo tam g ps s ¥y Jt*0 + o[, o
the monomials of p, will end in ¢, or t*; which belong to R, and so annihilate v.
Next t*;0 = (urv*)*v = vru*v = vr(u,v) = 0 since uev*. Thus we remain with
0 = polty, - rstam1s 1, thao Jtav = po(t, t*¥](urv*v) = po[t; t*Ju - r(v,v).
Hence since (v,v) # 0 and this being true for every re R and uev" yields that
PolX1>+*s Xa—13X*, -+ ¥*a—(] = O is an identity in R, as required.

If (v,v) = O for every ve R we proceed as in [1] p. 104 line — 12 to -2 and
we get Vo =0,D +0,D, V=,V + V& and Ry = {r|rV, = 0 and r¥Vi'c ¥},
where (v,0,) # 0. R, is an irreducible ring of endomorphisms of Vg, and one has
to show that R, satisfies and identity of degree < d —2:

For arbitrary r,,r, € R, and u € V5~ we choose t, = v;r,v, * and t,_; = ur,v,*;
and t,€ Ry, i £ d —2. Computing 0 = p[ty, -, t; t,*, -+, 4,*]v, we observe that
each monomial which ends with t; or t*, i £ d —2 will annihilate v, since
t,1*,€Ry td so tp, = tfv; = t*v; =0, as well as t,t; = tw,r;0%0, =0
and similarly %t =0. Furthermore, #*,0; = v,r*;v*;v; =0 since
(vy,07) = v*v; =0, and t*,_,v; = v,7*u*v; = v,7*,(u, v;) = 0 and the same
reason yields also that r*,_jt, = vyr*u*v;riv*; = 0. Thus we are left in
0 = p[t,t*]v, only with monomials ending with #,_,#,, and with t,_,v,. Mo-
nomials of the form y; ++- ya— 11,10, With the y; are all different ¢; or #*; must



68 S. A. AMITSUR Israel J. Math.

contain either t; or t*; and will not contain t*,_,; now ¢, or t*; can not be in
the middle since #;t; = t*;t, = t;t*; = t*4*, = 0 for i £ d —2 as seen before.
But then since t*,t,€R, for i £d — 2 it follows that y, = t*;, or t; and
V2 o Vacila— 101 = Y3 *** Ya—1Urv* 8= uor,v*, for some upeVy and hence
g, = vr¥ ¥y = vr* (v, up) = 0 since (vy,up,) =0; similarly fu,=0.
Thus we have
0 = p[t,t*]o,

= Plt1ssstamzs ¥, g Jta— 1 ta0

= Plty, s tag5t* g, ooy gy Jurv* 0 r 0% 50,

= plt;t* Jury(vav)ri(va0y).
Since (v,,v,) # 0 and this being true for all v,,r,e R and ueVy"implies that
Pltes o stamast*s, >, t*4_2] = 0 hold in R, as required.

These are the only changes needed to complete the proof of our lemma and

the rest is as in [1] p. 105.
We can now complete the proof of a theorem which is parallel to [1] Theorem

5, following the arguments of [1] pp. 103-105. We do not repeat the proof, but
only state the resuit;

THEOREM 9. If R satisfies an identity p[x;x*] = O of degree d, then R/L(R)
satisfies an ordinary identity (not involving x¥*) of degree < 2d, and R[N ,(R)
satisfies an ordinary identity of degree <£2d2.

Finally, the proof of our main Theorem 1 is exactly the same as that of [1]
Theorem 6,
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