IDENTITIES IN RINGS WITH INVOLUTIONS

BY

S. A. AMITSUR

ABSTRACT

A ring R with an involution $a \rightarrow a^*$ which satisfies a polynomial identity $p[x_1,...,x_d; x^*_{1},..., x^*_{d}] = 0$ satisfies- an identity which does not include the x^* . This generalizes the result of [1] where the symmetric elements of R were assumed to satisfy an identity.

1. Introduction. Let R be a ring with an involution *: $a \rightarrow a^*$. Let R be an Ω -algebra, (Ω will be assumed to be a commutative ring). In [1] we have shown that if the set of symmetric (or antisymmetric) elements of R satisfy a polynomial identity then the ring R itself satisfies a polynomial identity, and certain relations between the bounds of the identities have been obtained. In this paper we generalise this result in the following:

THEOREM 1. If R satisfies a polynomial identity of the form $p[x_1, \dots, x_r;$ x^* ₁ ... x^* _r] = 0 *of degree d, then R satisfies an identity* $S_{2d}[x]^m = 0^1$. If R *is semi-prime then m = 1.*

This extends the result of $[1]$, since if the symmetric elements of R satisfy a polynomial identity $p[z_1, ..., z_d] = 0$, then R satisfies the identity $p[x_1 + x^*, x_2 + x^*, ..., x_d + x^*] = 0$ which is of the form given in our theorem.

The proofs of the basic lemmas are obtained by refining those of [1] and by simplification of the case of primitive rings. Proofs which are the same as in [I] will just be quoted.

The polynomials $p[x; x^*]$ which appear in Theorem 1 can be described as follows: Let $\{x_j, y_j\}$ be an infinite set of pairs of non-commutative indeterminates over Ω , and construct the polynomial ring $\Omega[\cdots, x_j, y_j, \cdots] = \Omega[x; y]$, with Ω in the center. There is a unique involution *: $\Omega[x; y] \rightarrow \Omega[x; y]$ generated by the maps *: $x_j \rightarrow y_j$ and $y_j \rightarrow x_j$ for every j, Now $p[x; x^*]$ is an element in

¹ $S_{2a}[x] = S_{2a}[x_1,...,x_{2a}] = \sum \pm x_{i_1} x_{i_2} ... x_{i_{2a}}$ is the standard identity of degree 2d. Received January 24, 1969.

 $\Omega[x; y] = \Omega[x; x^*]$; by the degree of $p[x; x^*]$ we mean its total degree as a polynomial in $\Omega[x;x^*]$.

To simplify statement of results and proof we shall assume henceforth that:

(a) $p[x;x^*]$ is a polynomial of degree d, and the coefficient of one of its monomials of degree d is $= 1$;

(b) R will be assumed to satisfy the identity $p[x; x^*] = 0$; meaning that $p[a; a^*] = 0$ for every substitution $x_i = a_i$, $x^* = a^*$ of elements $a_i \in R$.

The linearization process of polynomial identities can be also applied in our case, and will yield:

LEMMA 2. If R satisfies the identity $\bar{p}[x;x^*] = \alpha m(x;x^*) + \cdots$ of degree d where $\alpha \neq 0$ and $m(x;x^*)$ is a monomial of degree d, then R satisfies also an *identity* $p[x; x^*] = \alpha x_1 x_2 \cdots x_d + p_0[x_1, \cdots, x_d; x^*], \cdots, x^*$ _d where the mono*mials of* $p_0[x;x^*]$ with non-zero coefficients are of degree d and each contain *either x_i or* x^* *_i (not both!) for every* $i = 1, \dots, d$ *.*

The proof is by linearization and induction on the maximum of "the degree" of p in x_i plus the degree of p in x^* . If the degree of p in x_i + the degree of p in x^* is l, then the polynomial $p[\cdots, x_i + z, \cdots; \cdots, x^* + z^*, \cdots] - p[\cdots, x_i, \cdots;$ \cdots, x^*, \cdots] - $p[\cdots, z, \cdots; \cdots, z^* \cdots]$ which is obtained by replacing x_i by $x_i + z$ and x^* _i by x^* _i + z^* (z is an additional x) and substraction, will also hold in R and will contain a monomial $\alpha m'(x;x^*)$ of degree d. The degree of this new polynomial in x_i + degree in x^* _i will be lower - and induction can be applied. The case where these degrees for each i is one will give a monomial $\alpha y_1, \dots, y_d = \alpha \bar{m}(x, x^*)$ where each y_i is an x_j or x^* , but only one of them will appear. Replacing the x^* , by x_j (and x_j in the other monomials by x^* _i) and changing the indices will clearly yield our lemma.

Since we assumed in (a) that one α is = 1, hence we may assume that $p[x; x^*]$ is the of form:

$$
(a') \qquad p[x_1, \cdots, x_d; x^* \cdots, x^* \cdots] = x_1 x_2 \cdots x_d + p_0[x_1 \cdots, x_d; x^* \cdots, x^* \cdots]
$$

and p_0 is of the form stated in Lemma 2.

If we use the polynomial of (a') then clearly we have:

LEMMA 3. If R satisfies $p[x;x^*]=0$, and K is a commutative Ω ring then $R \otimes_{\Omega} K = R_K$ also satisfies $p[x; x^*]=0$, where the involution of R_K is given *by* $(r \otimes k)^* = r^* \otimes k$, and every homomorphic image R ϕ of R, for which $(\ker \phi)^* \subseteq \mathop{\mathrm{Ker}}\nolimits \phi$ *will also satisfy the same identity.*

The proof is evident since $p[x, x^*]$ can be assumed to be of degree 1 in each x_i and x^* , with no two of them in the same monomial.

2. Nil subsets of R. We are now in position to refine the proofs of 1 , and to show our first result:

LEMMA 4. *Let P be a two sided ideal, and U a subset of R such that* $U = U^* = \{r^* | R \in U\}$ and $U^m \subseteq P$ then U^d generates a nilpotent ideal mod*ulo P.*

The proof is parallel to $[1,$ Lemma 1]:

For $k > d$, consider the sets $T_{2j-1} = U^{k-j}RU^{j-1}$ and $T_{2j} = U^{k-j}RU^j$ for $j = 1, 2 \cdots, k$. Since $U^* = U$, it follows that $T^*_{\lambda} = T_{2k-1}$, and so if $\lambda \leq d$. $2k - \lambda > d$. Note also that if $t_i \in T_i$ for all i, then $t_i t_j \in RU^kR$ if $i > j$. Hence if we choose $x_i = t_i$ $i = 1, 2, \dots, d$ then $x^* = t^* = T_{2k-i}$ and $2k-i>d$. Hence for every monomial $y_{j_1} \cdots y_{j_d}$ where the y_j is one of the t_i or t^* and which is not $t_1t_2\cdots t_d$, we have $y_{j_1}y_{j_2}\cdots y_{j_d}$. $U^kR \subseteq RU^kR$ $(2h = d, \text{ or } 2h-1 = d)$ (compare with [1, p. 101]). So that $p[t; t^*]U^h R \equiv t_1 \cdots t_d U^h R$ (mod RU^kR) and the rest of the proof is that of $[1 \t lemma 1]$.

Next theorem is the extension of $\lceil 1, \text{Theorem 2} \rceil$. The proof is the same and will not be repeated.

THEOREM 5. *If R satisfies an identity of degree d, then the nil radical U(R) is equal to the lower radical* $L(R)$ *and* $L(R)^d \subseteq N_1(R)$, *where* $N_1(R)$ *is the union of all nilpotent ideals of R, In particular, if R is semi-prime (i.e.* $L(R) = 0$) *then R has no nil ideals.*

3. Primitive images of R , We turn now to the primitive case. Let R be an arbitrary ring with an involution, P a primitive ideal in R such that *R/P* is an irreducible ring of endomorphisms of a vector space V_D , over a division ring D.

Instead of [1, Lemma 3], we have a different result, which will enable us to prove that primitive rings with identities always have a minimal left ideal:

LEMMA 6. *If R is as above, then one of the following hold:*

1. R/P has a minimal left ideal.

2. There is a finite dimensional D-subspace $W \subseteq V$, such that $L = (0: W)$ $= \{r | rW = 0\}, \text{ satisfies } L^* \subseteq P.$

3. For every finite dimensional subspace $W \subseteq V$, and every $v \notin W$, there *exists* $x \in R$ *such that* $xW = x^*W = 0$ $x^*v = 0$ *and* $xv \notin W + vD$.

Proof. If R has no minimal left ideal, i.e. (1) is not valid, and neither (2) holds, then let W be a f.d. subspace of V and let $v \notin W$. Consider the f.d.-space $\ddot{W} = W + vD$. $(0:\ddot{W})^* \notin P$ since (2) does not hold, hence there exists $a \in R$ such that $a\bar{W} = 0$ and $a^*V \neq 0$: namely, take $a \in (0: \bar{W})$ such that $a^* \notin P$. The space a^*V is not finite dimensional, since a primitive ring which has a linear transformation of finite range has a minimal left ideal ([2]) p. 75). Let $L \neq (0:W)$ then since $v \notin W$ it follows by the density theorem that $Lv = V$. Hence $a^*Lv = a^*V$, which is of infinite dimension, must contain a vector $u \notin W + vD$ as the latter is of finite dimension. We conclude therefore that there exists $b \in L$ such that $a^*bv = u$. Finally set $x = a^*b$; then $u = xv \notin W + vD$; $xW = 0$ since $b \in (0;W);$ $x^* = b^*a$ so that $x^*W = 0$ i.e. $x^*W = x^*v = 0$. q.e.d.

With the help of this lemma we prove the parallel of $[1, \text{lemma } 4]$. That is:

LEMMA 7. *If R is a ring with an involution which satisfies an identity then every primitive image of R has a minimal left ideal.*

Proof. We have to consider cases (2) and (3) of Lemma 6. In case (2), and if (1) does not hold then $(V: D) = \infty$, and let v_0, v_1, \dots, v_d be D-independent elements of V which \notin W. W is finite dimensional hence, it follows by the density theorem that there exists $t_i \in (0:W)$ such that $t_i v_j = 0$ for $i \neq j$ $t_i v_i = v_{i-1}$ for $i = 1, 2, \dots d$. Since $(0: W)^* \subseteq P$ it follows that $t^*_{i}V = 0$. Hence:

$$
0 = p[t_1, \cdots, t_d; t^*_{1}, \cdots, t^*_{d}]v_d = t_1t_2 \cdots t_d v_d = v_0 \neq 0
$$

which is a contradiction. Thus, even in this case *RIP* has a minimal left ideal.

In case (3), and if (1) does not hold then: we obtain a contradiction as follows:

Start with $v \neq 0$ and choose $t_d \in R$ by (3) so that $t_d v \notin vD$, $t *_{d} v = 0$ (use $W = 0$). Next choose $t_{d-1} \in R$ by (3) so that $t^*_{d-1}v = t^*_{d-1}t_dv = 0$, $t_{d-1}v = 0$ and $t_{d-1}t_dv\neq vD + t_dvD$ by applying (3) to $W = vD$ and v replaced by t_dv . We can continue this way to get a sequence of elements t_1, t_2, \dots, t_d such that $t_j(t_it_{i+1}\cdots t_d v) = 0$ for $i < j+1$; $t^*_{j}(t_it_{i+1}\cdots t_d v) = 0$ for $i \leq j+1$ and $t_j t_{j+1} \cdots t_d v \notin vD + t_d vD + t_{d-1} t_d vD + \cdots + t_{j+1} t_{j+2} \cdots t_d vD$.

Consider now the substitution $x_i = t_i$ then

$$
0 = p[t_1, \cdots, t_d; t^*, \cdots, t^*_{d}]v = p_1[t_1, \cdots, t_{d-1}; t^*, \cdots, t^*_{d-1}]t_d v
$$

since each monomial which does not end with t_d will annihilate v as it ends with t_j ($j \neq d$) or a t^*_{k} ($k \leq d$) and all these annihilate v. The monomials ending with t_d will not contain t^* _d (by the way $p[x; x^*]$ was chosen) so that $p_1[$,] does

not contain neither t_d nor t_d . The same reasoning replacing v by $t_d v$, and continuing for $t_{d-1}t_d v$ $t_{d-2}t_{d-1}t_d v$ etc., will yield: $0 = p[t, t^*]v = t_1t_2 \cdots t_d v \neq 0$ Again a contradiction, which implies that *RIP* has a minimal left ideal.

Finally we reprove the crucial part of $\lceil 1, \text{Theorem 5} \rceil$.

LEMMA 8. *lf R is a primitive ring with an involution satisfying an identity* $p[x; x^*] = 0$ of degree d then R is a complete ring of linear transformations *of a vector space* V_p *of dimension* $\leq d$.

Proof. We proceed as in [1, p. 104], and get the Hermitian for (v, v) form $V = Re$, where *Re* is a mininmal left ideal. If there exists $v \in V$ such that $(v, v) \neq 0$, we have $V = vD + v^{\perp}$ and $R_0 = \{r \in R \mid rf = 0, rv^{\perp} \subseteq v^{\perp}\}\$ is also an irreducible ring of endomorphism of v^{\perp} , and the involution (*) induces an involution on R_0 (the proofs are given in [1] p. 104 lines 7-20). Now R_0 will satisfy an identity of degree $d-1$, since choose $t_d = ur[*]v[*]$, $v \in V$ and u arbitrary in $v[⊥]$, $r \in R$ arbitrary, and all $t_i \in R_0$ for $i < d$. Then:

$$
0 = p[t_1, \cdots, t_d; t^*_{1}, \cdots, t^*_{d}]v =
$$

= $p_0[t_1, \cdots, t_{d-1}; t^*_{1}, \cdots, t^*_{d-1}]t_d v + p_1[t_1, \cdots, t_{d-1}; t^*_{1}, \cdots, t^*_{d-1}]t^*_{d}v + p_2[,]v$

the monomials of p_2 will end in t_i or t^* _i which belong to R_0 and so annihilate v. Next $t^*_{d}v = (urv^*)^*v = vru^*v = vr(u, v) = 0$ since $u \in v^{\perp}$. Thus we remain with $0 = p_0[t_1, \dots, t_{d-1}; t^*, \dots, t^*_{d-1}]t_d v = p_0(t, t^*](urv^*v) = p_0[t; t^*]u \cdot r(v, v).$

Hence since $(v, v) \neq 0$ and this being true for every $r \in R$ and $u \in v^{\perp}$ yields that $p_0[x_1, ..., x_{d-1}; x^*_{1}, ..., y^*_{d-1}] = 0$ is an identity in R_0 , as required.

If $(v, v) = 0$ for every $v \in R$ we proceed as in [1] p. 104 line - 12 to -2 and we get $V_0 = v_1 D + v_2 D$, $V = V_0 + V_0^1$, and $R_0 = \{r | rV_0 = 0 \text{ and } rV_0^1 \subseteq V_0^1\}$, where $(v_1v_2) \neq 0$. R_0 is an irreducible ring of endomorphisms of V_0^{\perp} , and one has to show that R_0 satisfies and identity of degree $\leq d - 2$:

For arbitrary $r_1, r_2 \in R$, and $u \in V_0^{\perp}$ we choose $t_d = v_1 r_1 v_2^*$ and $t_{d-1} = u r_2 v_2^*$; and $t_i \in R_0$, $i \leq d-2$. Computing $0 = p[t_1, \dots, t_d; t_2^*, \dots, t_d^*]v_1$ we observe that each monomial which ends with t_i or t_i^* , $i \leq d-2$ will annihilate v_i since $t_i, t^*_{i} \in R_0$ rnd so $t_i v_1 = t_i^* v_1 = t^*_{i} v_1 = 0$, as well as $t_i t_i v_1 = t_i v_1 r_1 v^*_{i} v_1 = 0$ and similarly $t^*_{i}t_d v = 0$. Furthermore, $t^*_{d}v_1 = v_2r^*_{1}v_1^*v_1 = 0$ since $(v_1, v_1) = v_*^1 v_1 = 0$, and $t_*^1 u_1 = v_1 t_*^1 u_*^1 = v_2 t_*^1 u_*^1 = v_2 t_*^1 u_*^1 = 0$ and the same reason yields also that $t^*_{d-1}t_d = v_2r^*_{2}u^*v_1r_1v^*_{2} = 0$. Thus we are left in $0 = p[t, t^*]v_1$ only with monomials ending with $t_{d-1}t_d v_1$ and with $t_{d-1}v_1$. Monomials of the form $y_1 \cdots y_{d-1} t_{d-1} v_1$ with the y_i are all different t_j or t^* _I must contain either t_d or t_d^* and will not contain t_d^* _{a-1}; now t_d or t_d^* can not be in the middle since $t_i t_d = t^*_{i} t_d = t_i t^*_{i} = t^*_{i} t^*_{i} = 0$ for $i \le d-2$ as seen before. But then since $t^*, t_i \in R_0$ for $i \leq d - 2$ it follows that $y_1 = t^*$ or t_d and $y_2 \cdots y_{d-1}t_{d-1}v_1 = y_2 \cdots y_{d-1}ur_2v^*_{2} = u_0r_2v^*_{2}$ for some $u_0 \in V_0^{\perp}$ and hence $t^*_{d}u_0 = v_2r^*_{1}v^*_{1}u_0 = v_2r^*_{1}(v_1, u_0) = 0$ since $(v_1, u_0) = 0$; similarly $t_du_0 = 0$. Thus we have

$$
0 = p[t, t^*]v_1
$$

= $\tilde{p}[t_1, \dots, t_{d-2}; t^*], \dots, t^*_{d-2}]t_{d-1}t_d v_1$
= $\tilde{p}[t_1, \dots, t_{d-2}; t^*], \dots, t^*_{d-2}]ur_2v^*_{2}v_1r_1v^*_{2}v_1$
= $\tilde{p}[t; t^*]ur_2(v_2v_1)r_1(v_2v_1).$

Since $(v_2, v_1) \neq 0$ and this being true for all $v_1, r_2 \in R$ and $u \in V_0^{\perp}$ implies that $\bar{p}[t_1, ..., t_{d-2}; t^*, ..., t^*_{d-2}] = 0$ hold in R_0 as required.

These are the only changes needed to complete the proof of our lemma and the rest is as in $\lceil 1 \rceil$ p. 105.

We can now complete the proof of a theorem which is parallel to $\lceil 1 \rceil$ Theorem 5, following the arguments of [1] pp. 103-105. We do not repeat the proof, but only state the result;

THEOREM 9. If R satisfies an identity $p[x; x^*] = 0$ of degree d, then $R/L(R)$ *satisfies an ordinary identity (not involving x*) of degree* $\leq 2d$, and $R/N_1(R)$ satisfies an ordinary identity of degree $\leq 2d^2$.

Finally, the proof of our main Theorem 1 is exactly the same as that of [1] Theorem 6.

REFERENCES

[1] S. A. Amitsur, *Rings with involutions,* Israel J. Math. 6 (1968), 99-106.

[2] N. Jacobson, *Structure of rings,* Colloquia 37 (1956).

HEBREW UNIVERSITY OF JERUSALEM