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ABSTRACT 

A ring R with an involution a---> a* which satisfies a polynomial identity 
p[xl,...,xd; x*t .... ,x*d] = 0  satisfies- an identity which does not include 
the x*. This generalizes the result of Ill where the symmetric elements of R 
were assumed to satisfy an identity. 

1. Introduction. Let R be a ring with an involution *: a --, a*. Let R be an 

f~-algebra, (f~ will be assumed to be a commutative ring). In [1] we have shown 

that if the set of  symmetric (or antisymmetric) elements of R satisfy a polynomial 

identity then the ring R itself satisfies a polynomial identity, and certain relations 

between the bounds of  the identities have been obtained. In this paper we generalise 

this result in the following: 

TrmOREM 1. I f  R satisfies a polynomial identity of the form p[x 1,...,xr; 

x* 1 ... x*r] = 0 of degree d, then R satisfies an identity S2a[x] m = 01. I f  R 

is semi-prime then m = 1. 

This extends the result of  [1], since if the symmetric elements of  R satisfy a 

polynomial identity p [ z l , . . . , z J  = 0, then R satisfies the identity 

p[xl + x*l ,  x2 + x*2, "",xa + x*a] = 0 which is of the form given in our 

theorem. 

The proofs of the basic lemmas are obtained by refining those of  [1] and by 

simplification of  the case of primitive rings. Proofs which are the same as in [ I ]  

will just be quoted. 

The polynomials p[x;x*] which appear in Theorem 1 can be described as 

follows: Let {x j, y j} be an infinite set of pairs of  non-commutative indeterminates 

over f~, and construct the polynomial ring t)['. . ., x j, y j , . . . ]  = f~ [x ;y ] ,  with f~ 

in the center. There is a unique involution *: f~[x;y] - ,  I2[x;y]  generated by 

the maps *: xj ~ y~ and yj - - ,  xj for every j ,  Now p[x;x*] is an element in 

1 S 2 a [ x ]  =S2a[xl . . . . .  X2ar] = y.,q-X~ X~2...X~2 d is the standard identity of degree 2d. 
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I'~[x;y-I = f~[-x;x*l; by the degree of p[x;x*] we mean its total degree as a 

polynomial in f~[x;x*]. 

To simplify statement of results and proof we shall assume henceforth that: 

(a) p[x;x*l  is a polynomial of degree d,  and the coefficient of one of its 

monomials of degree d is = 1; 

(b) R will be assumed to satisfy the identity p[x;x*l  = 0; meaning that 

p[a;a*l = 0 for every substitution x i = al, x*~ = a*i of elements ag ~ R. 

The linearization process of polynomial identities can be also applied in our 

case, and will yield: 

LEMMA 2. I f  R satisfies the identity p[x;x*l  = ctm(x;x*) + ... of degree d 

where ~t ~ 0 and m(x;x*) is a monomial of degree d, then R satisfies also an 

identity p[x;x*-I = O~XlX2"" Xd + po[Xl,'",Xd; X*~,"',X*d] where the mono- 

rnials of po[x;x*] with non-zero coefficients are of degree d and each contain 

either x i or x* i (not both!)for every i = 1, ..., d. 

The proof is by linearization and induction on the maximum of "the degre e 

of p in x i plus the degree of p in x*~". I f  the degree of p in xi + the degree of p 

in x*~ is l, then the polynomial p[..., x~ + z, . . . ;  .-.,x* + z*, . . . ] -p [ . . . , x~ , . . . ;  

• . . , x * i , ' " ] -  P['",  z, . . . ; . . . ,z* ...] which is obtained by replacing x i by x, + z 

and x*i by x*i + z* (z is an additional x) and substraction, will also hold in R 

and will contain a monomial ctm'(x;x*) of degree d. The degree of this new 

polynomial in xi + degree in x*i will be lower - and induction can be applied. 

The case where these degrees for each i is one will give a monomial 

~Yl, "", Yd = ~ ( X ,  X*) where each Yi is an xj or x ' j ,  but only one of them will 

appear. Replacing the x* i by xj (and xj in the other monomials by x ' j )  and chang- 

ing the indices will clearly yield our lemma. 

Since we assumed in (a) that one c¢ is = 1, hence we may assume that p[x; x*] 

is the of form: 

(a') p[x,,  "",Xd; X*l "",X'd] = XlX2 "" Xd + po[Xl "",Xd; X*,, "",X*d] 

and Po is of the form stated in Lemma 2. 

If we use the polynomial of (a') then clearly we have: 

LE~MA 3. I f  R satisfies p[x;x*] = O, and K is a commutative ~ ring then 

R @oK = Rr also satisfies p[x;x*] = O, where the involution of rR K is given 

by (r ®k)* = r * ® k ,  and every homomorphic image Rq~ of R ,  for which 

(kerqS)*_ Ker~b will also satisfy the same identity. 
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The proof is evident since p]-x, x*] can be assumed to be of degree 1 in each 

xi and x*i with no two of them in the same monomial. 

2. Nil subsets of R. We are now in position to refine the proofs of 1, and 

to show our first result: 

LEMMA 4. Let P be a two sided ideal, and U a subset of R such that 

u = u* = {r*[R e U} and U m ~_ P then U d generates a nilpotent ideal mod- 

ulo P.  

The proof is parallel to [1, Lemma 1]: 

For  k > d ,  consider the sets T2~-1 = Uk-JRU J-1 and T2~ = uk-~RU 1 for 

j = 1,2 . . . ,k .  Since U* = U, it follows that T*x = T2k-X, and so if  2 ~ d ,  

2k - 2 > d.  Note also that if ti e Ti for all i, then t~tj e RUkR if  i > j .  Hence if 

we choose x~ = t~ i = 1 ,2 , . . . ,d  then x*~ = t*ieT2k_~ and 2 k - i > d .  Hence 

for every monomial Y jl"'" YJd where the yj is one of the t~ or t*~ and which is not  

t l t2. . . td,  we have YjlYj2""YJ," UhR ~- RUkR (2h = d,  or 2 h - 1  = d) (com- 

pare with ]-1, p. 101]). So that p]-t;t*]UhR -- t~ ... tdUhR (modRUkR) and the 

rest of  the proof  is that of  ]-1 1emma 1]. 

Next theorem is the extension of ['1, Theorem 2]. The proof  is the same and 

will not be repeated. 

THEOREM 5. I f  R satisfies an identity of degree d, then the nil radical U(R) 

is equal to the lower radical L(R) and L(R) ~ ~_ NI(R),  where Nt(R ) is the union 

of all nilpotent ideals of R ,  In particular, i f  R is semi-prime (i.e. L(R) = O) 

then R has no nil ideals. 

3. Primitive images of R ,  We turn now to the primitive case. Let R be an 

arbitrary ring with an involution, P a primitive ideal in R such that R/P is an 

irreducible ring of endomorphisms of a vector space VD, over a division ring D. 

Instead of [1, Lemma 3], we have a different result, which will enable us to 

prove that primitive rings with identities always have a minimal left ideal: 

LEMMA 6. I f  R is as above, then one of the following hold: 

1. R/P has a minimal left ideal. 

2. There is a finite dimensional D-subspace W ~_ V, such that L = (0: IV) 

= {r I rW = 0}, satisfies L* ~_ P .  

3. For every finite dimensional subspace W ~_ V, and every v(E W, there 

exists x e R  such that x W =  x ' W =  0 x*v = 0 and xvq~ W + vD. 
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Proof. If  R has no minimal left ideal, i.e. (1) is not valid, and neither (2) 

holds, then let W be a f.d. subspace of  V and let v ~ W. Consider the f.d.-space 

l~  = W + v D .  (0:I~)* ~ P  since (2) does not hold, hence there exists a e R  

such that aft" = 0 and a*V # 0: namely, take a e(0:  l~) such that a* ~ P .  The 

space a*V is not finite dimensional, since a primitive ring which has a linear 

transformation of  finite range has a minimal left ideal ([-2]) p. 75). Let L # (0: W) 

then since v6 W it follows by the density theorem that Lv = V. Hence 

a*Lv = a ' V ,  which is of infinite dimension, must contain a vector u 6  W + vD 

as the latter is of finite dimension. We conclude therefore that there exists b ~ L 

such that a ' b y  = u .  Finally set x = a ' b ;  then u = x v 6  W + vD; x W  = 0 since 

b e ( 0 : W ) ;  x* = b*a so that x*l~ = 0  i.e. x * W = x * v  = 0. q.e.d. 

With the help of  this lemma we prove the parallel of  [,1, lemma 4]. That  is: 

LEMMA 7. I f  R is a r ing with an involution which satisfies an ident i ty  then 

every pr imi t ive  image  o f  R has a m i n i m a l  left ideal. 

Proof. We have to consider cases (2) and (3) of Lemma 6. In case (2), and 

if (1) does not hold then (V:D) = oo, and let Vo, V 1, . . . ,v  d be D-independent 

elements of Vwhich ¢ W. Wis finite dimensional hence, it follows by the density 

theorem that there exists t i~ (0 :W ) such that tivj = 0 for i # j  t~v~ = vi_ 1 

for i = 1,2,--- d.  Since (0: W)* G P it follows that t*~V = 0. Hence:  

0 = p[,t t , . . . , td; t*l,. . . ,t*d]Vd = t j t2""tdvd = VO # 0 

which is a contradiction. Thus, even in this case RIP has a minimal left ideal. 

In case (3), and if (1) does not hold then: we obtain a contradiction as follows: 

Start with v ~ 0 and choose t d e R by (3) so tha t  tdv q~ vD, t*dv = 0 (use W -- 0). 

Next choose t d _ l ~ R  by (3) so that t*d_lv = t*d_ltdv = O, td_lV = 0  and 

td_~tdvq~vD + tdVD by applying (3) to W = vD and v replaced by tar. We can 

continue this way to get a sequence of  elements t l , t2 , . . . , td  such that 

t j ( t i t i + l . . . t d v ) = O  for i < j + l ;  t * j ( t d i + l . . . t d v ) = O  for i < = j + l  and 

tjtj+ 1 ... tdvq~ vD + tdvD + td_ltdvD + ... + t j + l t j +  2 " ' "  tdvD. 

Consider now the substitution x~ = ti then 

0 = p[ ' t t , ' " , t~;  t*l,  "",t*d]v = Pl['tl ,  " " , t d - t ; t * l , ' " , t * d - 1 ] t d v  

since each monomial which does not end with t a will annihilate v as it ends with 

t~ ( j  # d) or a t*~ (k -<_ d) and all these annihilate v. The monomials ending 

with td will not contain t*a (by the way p[,x; x*] was chosen) so that P l [ ,  ] does 
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not contain neither td nor t*d. The same reasoning replacing v by tdv, and con- 

tinuing for ta-ltaV t~-2t~-ltav etc., will yield: 0 = p[t , t*]v = t i t2""  tdv # 0 
Again a contradiction, which implies that RIP  has a minimal left ideal. 

Finally we reprove the crucial part of  [1, Theorem 5]. 

LEMMA 8. l f  R is a pr imi t ive  r ing with an involution sat is fying an ident i ty  

p[x;  x*] = 0 of degree d then R is a complete r ing of  l inear transformations 

of  a vector space Vo of  dimension < d .  

Proof. We proceed as in [1, p. 104], and get the Hermitian for (v,v) form 

V = Re, where Re is a mininmal left ideal. I f  there exists v ~ Vsuch that (v, v) # 0, 

we have V = vD + v ± and R o = {r ~ R ] rf  = O, rv ± c_ v a-} is also an irreducible 

ring of endomorphism of  v~ and the involution (*) induces an involution on Ro 

(the proofs are given in [11 p. 104 lines 7-20). Now Ro will satisfy an identity 

of  degree d -  1, since choose td = ur*v*, v e  V and u arbitrary in v x, r ~ R  ar- 

bitrary, and all ti ~ Ro for i < d.  Then: 

0 = Pit1, . . . ,  td; t*l,  "", t*d]v = 

= p o [ t l , ' " ,  td-1 ;t* 1,'" ", t 'd-1]  tdv "1" Pl [ t l '  " ' "  td-1 ; t * , , ' " ,  t'd--1]t*av + P2[ '  ]V 

the monomials of  P2 will end in ti or t*i which belong to Ro and so annihilate v. 

Next t*dv = (urv*)*v = vru*v = vr(u, v) = 0 since u z v ±. Thus we remain with 

0 = p o [ t l , . " , t a - t ;  t* l , ""  t*a-1]tav = po(t , t*](urv*v) = po[t ; t*]u"  r(v,v). 

Hence since (v, v) # 0 and this being true for every r ~ R and u e v j- yields that 

p o [ X l , ' " , x ~ - l ; x * t , " "  Y*d-t] = 0 is an identity in Ro, as required. 

If  (v,v) = 0 for every v z R we proceed as in [1] p. 104 line - 12 to -2 and 

we get Vo --- vtD + oaD, V =,  Vo + V~, and Ro = {r ] rVo = 0 and rVoXlC_ V~}, 

where (vlv2) # 0. Ro is an irreducible ring of endomorphisms of V~, and one has 

to show that R o satisfies and identity of degree __< d - 2: 

For arbitrary rl ,  r2 ~ R ,  and u e Vo x we choose td = vtr tv  2 * and td_ t = ur2v2*; 

and t icRo,  i < d - 2. Computing 0 = p[t l , . . . , td;  t2*, "" , td*]Vt  we observe that 

each monomial which ends with t~ or t~*, i < d -  2 will annihilate vt since 

ti, t * i ~ R o  rnd so tiv t = t*vi = t*~vt = 0, as well as  titdV t = t i v l r t v * 2 v  I = 0 

and similarly t*ftdv = O. Furthermore, t*dv t = v2r*iv*tv 1 = 0 since 

(vl,  vl)  = v*lvt  = 0, and t*d_lV l = v2r*2u*v l  ----- v2r*2(u ,  Vl) = 0 and the same 

reason yields also that t*a_da = v2r*2u*virlv*2 = 0. Thus we are left in 

0 = p[t , t*]vt  only with monomials ending with ta-ddv~ and with td_~vt. Mo- 

nomials of the form Yt "'" Y a - t t a - l v i  with the Yi are all different tj or t* 1 must 
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contain either t a or t* a and will not contain t* a_ x; now t a or t* a can not be in 

the middle since tit a = t*:a = tit* a = t 'd*  a = 0 for i =< d -  2 as seen before. 

But then since t*i, t ieRo for i < d  - 2 it follows that y~ = t * a  or td and 

Y2 "" Yd- l td - lVl  = Y2 "" Yd-lur2v*2~=uor2v*2 for some uo~V~- and hence 

t'dUo = V:*IV*lUo = v2r*l(vl, Uo) = 0 since (vl, Uo) =0 ;  similarly taUo= 0 . 

Thus we have 

0 = p[t , t*]v  1 

= bit1,. . . , ta_2; t* l , . . . ,  t*a_2]t a_ 1tara 

= P [ q , ' " ,  ta-z; t * , . . . ,  t*a_2]ur2v*2v:lv*2v 1 

= Pit;  t*]ur2(v2vOrl(v2vO. 

Since (v2,v0 # 0 and this being true for all v ~ , r 2 e R  and u e V ~ i m p l i e s  that 

P [ t x , ' " , t n - 2 ; t * l , ' " , t * n - 2 ]  = 0 hold in Ro as required. 

These are the only changes needed to complete the proof  of  our lemma and 

the rest is as in [1] p. 105. 

We can now complete the proof  of  a theorem which is parallel to [1] Theorem 

5, following the arguments of  [1] pp. 103-105. We do not repeat the proof, but 

only state the result; 

THEOREM 9. I f  R satisfies an ident i ty  p [x ;x*]  = 0 of  degree d ,  then R[L(R)  

satisfies an ordinary identi ty  (not involving x*) of  degree < 2d,  and  R[Nx(R)  

satisfies an ordinary identity of  degree <= 2d z.  

Finally, the proof of our main Theorem 1 is exactly the same as that of  [1] 

Theorem 6. 
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